
1

HTML Page Analysis Based on Visual Cues

Yudong Yang and HongJiang Zhang
Microsoft Research China

No. 49, Zhichun Road, Beijing, China
yangyud@cn.ibm.com, hjzhang@microsoft.com

Abstract
In this paper, we present a novel approach to automatically

analyzing semantic structure of HTML pages based on detecting
visual similarities of content objects on web pages. The approach
is developed based on the observation that in most web pages,
layout styles of subtitles or records of the same content category
are consistent and there are apparent separation boundaries
between different categories. Thus these subtitles should have
similar appearances if they are rendered in visual browsers and
different categories can be separated clearly. In our approach, we
first measure visual similarities of HTML content objects. Then we
apply a pattern detection algorithm to detect frequent patterns of
visual similarity and use a number of heuristics to choose the most
possible patterns. By grouping items according to these patterns,
we finally build a hierarchical representation (tree) of HTML
document with “visual consistency” inferred semantics.
Preliminary experimental results show promising performances of
the method with real web pages.

1. Introduction

The World Wide Web has become one of the most important
information sources today. Most of data on web are available as
pages encoded in markup languages like HTML intending for
visual browsers. As the amount of data on web grows, locating
desired contents accurately and accessing them conveniently
become pressing requirements. Technologies like web search
engine and adaptive content delivery [1,2,3,4,5,6,7] are being
developed to meet such requirements. However web pages are
normally composed for viewing in visual web browsers and lack
information on semantic structures.

To extract these structures, documents wrappers are commonly
used. Building wrappers, however, is not a trivial task. Normally,
wrappers are built for specific web pages by having people
examine these pages and then figure out some rules that can
separate the chunks of interests on these web pages. Based on
these special rules, we can write the wrapper to extract information
from pages that belong to exactly the same class. Many wrappers
are just lexical analyzers as that discussed in [8]. Methods like [9]
make some improvements by using heuristics in addition to lexical

analyzers. There are also approaches trying to derive some
semantic structures directly. Approach presented in [10] discusses
a “concept” discovery and confirmation method based on
heuristics. Another one [11] introduces a method to find the
relationships between labeled semi-structured data.

As we can see that methods listed above are some limited
because detection of content chunks is actually done by human.
These methods are not feasible if a large amount and variations of
web pages are to be processed. Automatic methods or semi-
automatic methods are much more effective in this situation. Only
recently, several proposals discuss ways of automatic analysis. In
[14], a method to parse HTML data tables and generate a
hierarchical representation is discussed. The approach assumed
that authors of tables have provided enough information to
interpret tables. The authors of [13] introduce a method that
detects chunk boundary by combining multiple independent
heuristics. With specific field of interests, wrappers can also be
implemented based on semantic rules. Approach discussed in
[12] is such an idea.

HTML, as it was introduced with web technology, is the most
commonly used standard of current web pages. However it lacks
the ability of representing semantic related contents. For some
reasons, it was designed to take both structural and presentational
capability in mind. And these two were not clearly separated (In
the first version of HTML most of the tags were for structures. But
many layout and presentation tags were stuffed into following
versions and are widely used today. Some of the histories can be
found in [15]). Further widely misuses of structural HTML tags
for layout purpose make the situation even worse. Cascade Style
Sheet (CSS) [21] was later developed as a remedy to this, but only
recently several popular browsers begin to have better CSS
support [21]. The recent W3C recommendation of XML provides
a better way to organize data and represent semantic structures of
data. However, most of web contents are still authored in HTML.

Because of the common misusages, we consider that HTML
tags are not stable features for analyzing structures of HTML
documents. For semantic rules based approaches, limited fields of
interests and difficulties to learn new rules automatically restrict
their feasibilities with general web pages.

In this paper, we propose a novel method to extract semantic
structures from general HTML pages. This method doesn’t

2

require a priori knowledge of web pages. It uses features derived
directly from layout of HTML pages. As we observed, it’s
common for web pages to keep consistent visual styles with
parallel subtitles or records in same content categories and
different categories are separated by apparent visual boundaries.
The objective of our approach is to detect these visual cues and
construct the hierarchies of categories.

The paper is organized as following. Section 2 talks about
measurements of visual similarities. Then, in section 3 we
introduce our heuristics. After that, we talk about our method to
detect visual patterns and then to construct document structures
based on these heuristics. Experimental results are discussed in
section 4. In section 5 we present examples of the method being
used in our adaptive web content delivery test-bed. Finally,
section 6 sums up our discussions.

2. Visual Similarity of HTML Objects

Good organization of contents is an essential factor of good
content services. Figure 2 and Figure 3 on later pages show some
examples of typical web pages. From these examples we can see
that it’s quite common to divide contents into categories and each
category holds records of related subtitles. In addition, records in
one category are normally organized in ways having a consistent
visual layout style. Boundaries between different categories are
marked apparently with different visual styles or separators. As
we have said, the basic idea of our approach is to detect these
visual cues and then records and categories.

Appearances of HTML objects are defined by factors like
layout and style. With current W3C recommendations, layout and
style of HTML pages should be defined by CSS. However, due to
history reasons, CSS is not very popular yet and most of the web
pages are still patchworks of structural and deprecated [20]
presentation tags. Also by reasons like tricks to reduce page size,
laziness, mistakes, etc or because of some authoring tools of
limited functions, two HTML objects that look similarly in
browsers don’t denote that they use the same combinations of
HTML tags. Different tags and in different orders may all have
the same results. Approaches that relay on tags will not be
effective in these complex situations.

From previous analysis we can see that visual similarity should
be potentially a good feature for structure extraction. This
assumption is justified later by our experiment results. In
following discussions, we will use some terms as defined below:
! Simple object: None-breakable visual HTML objects that do

not include other HTML tags (like paragraphs of pure texts or
tags as , <HR>) or are representations of one embedded
media object (like<OBJECT>,<APPLET>).
! Container object: An ordered set of objects that consists of at

least one simple object or other container object and these
objects must be adjacent if they are rendered in browsers. Order
of these elements is normally defined by reading habits (“Left to
Right” and “Top to Bottom” in most languages). We represent a
container object C as a string of elements {e1, e2,…, en}, where
ei is simple objects or other container objects.

! Group object: Special container objects where all elements are
simple objects and these elements are rendered on the same text
line without deliberate line breaks by visual browsers.
! List object: Special container objects where all elements satisfy

some consistency constraint (like visual similarity defined later).
! Structured document: HTML documents converted to

hierarchical structures of container objects and simple objects.

Table Table Table Table 1111. Fuzzy rules for comparing. Fuzzy rules for comparing. Fuzzy rules for comparing. Fuzzy rules for comparing simple objects simple objects simple objects simple objects
Comp-

are
Rules

Text
&
Text

Starting from x=1.0
Compare key HTML attributes (like <H1> … <H6>,
<A>)

Key_Mod, Not Equal
x=x⋅

1, Equal
Compare font size attribute

Size_Mod, Not Equal
x=x⋅

1, Equal
Compare styles (bold, italic, underline, …)

Style_Mod, Not Equal
x=x⋅

1, Equal
Compare font face

Font_Mod, Not Equal
x=x⋅

1, Equal
Compare text length

 min(len1, len2) Adj
x=x⋅

 max(len1, len2) 

Image
&
Image

Starting from x=1.0
Compare key HTML attributes (like <H1>…<H6>,
<A>)

Key_Mod, Not Equal
x=x⋅

1, Equal
Compare color attributes (pseudo color, true color,
grayscale)

Col_Mod, Not Equal
x=x⋅

1, Equal
Compare image dimension

 min(x1, x2)⋅min(y1, y2)  Adj
x=x⋅

 max(x1, x2)⋅max(y1, y2) 

2.1 Visual similarity of simple objects

To compare visual similarities of more complex objects, we
will firstly start from simple objects. During the process to parse
HTML documents and to extract simple objects, we extract text
rendering parameters by keeping a stack of tags that affect text
attributes like font face, styles, size, and color. For other
embedded media objects like images, we extract information from
tag attributes or by analyzing their file headers. According to these
parameters, we define some fuzzy comparison rules to decide
visual similarity. Table 1 lists some of the rules we used in our
experiments where X_Mod∈[0,1] and Adj∈[0,1] are user-defined
values that represent the level of impacts on similarity
measurements when correspondent parameters are not equal. A
modifier equals to zero means that two objects are distinct or can’t
be compared at all (as in the case of text and image). For
simplicity, we only listed cases with image and text media types.

3

In our experimental systems, all common visual HTML objects
(like<HR>) are also considered.

2.2 Visual similarity of container objects

We define visual similarity of container objects based on that
of simple objects. To keep appropriate semantic granularities, we
define group objects as contents that are considered tightly related
from our visual cues based view (such as sentences and
paragraphs). And we do not break up group objects during the
analysis process. A simple object is treated as a container object
with only one element when it is compared with other container
objects. Beside these, list objects have their specialties because we
use them to represent detected categories and records. And instead
of using whole objects, we pick typical elements from list objects
to compare with other objects. With two container objects, we
define two kinds of visual similarity measurements:
! Approximate Similarity: Comparison of two element strings

that enables weighted mismatches and omissions (skips).
! Parallel Similarity: Comparison of two element strings that

enables only weighted mismatches.

Table Table Table Table 2222. Approximate String Compare Algorithm . Approximate String Compare Algorithm . Approximate String Compare Algorithm . Approximate String Compare Algorithm
compare(x, NULL) = skip_weight(x);
compare(simpleX, simpleY) = def by Table 1;
compare(strI[1..lthI], strJ[1..lthJ])
{
dim cmp[0..lthJ];
cmp[0] = 1;
lastv10 = 1;
for(j=1; j<=lthJ; j++)
cmp[j] = cmp[j-1] * compare(NULL, strJ[j]));

for(i=1; i<=lthI; i++) {
lastv11 = cmp[0];
cmp[0] = lastv10 * compare(strI[i], NULL);
lastv10 = cmp[0];
for(j=1; j<=lthJ; j++){
v11 = lastv11 * compare(strI[i], strJ[j]);
v10 = cmp[j] * compare(strI[i], NULL);
v01 = cmp[j-1] * compare(NULL, strJ[j]);
lastv11 = cmp[j];
cmp[j] = max(v11, v10, v01);

}
}
return cmp[lthJ];

}

From the definitions we can see that approximate similarity is
more robust than parallel similarity if there are outliers in strings.
In our experiments parallel similarity is simply an one-by-one
comparison. Algorithm of approximate similarity measurement
using dynamic programming is shown in Table 2. Weight of
skipping may differ from element to element because some of the
objects (as<H1>...<H6>) could be very important and skipping of
them would be costly (small weight) or not allowed (zero weight).

3. Pattern Detection and Construction of Document
Structures

In this section, we present our method to detect visual
similarity patterns and then records and categories of contents

based on previously defined similarity measurements. As we can
see, visual similarity patterns are not appearing as very stable
forms even with “well composed” web pages. Their lengths can
change from one to one, and outliers are common. Beside these
we do not have known boundaries to separate potential patterns.
Many proposals have been introduced to detect frequent
sequential patterns in large databases. However, due to differences
of applications, their expected constraints are different from us.

In our approach, we start from an exact pattern detection
method based on suffix trees and then we expand exact patterns
according to approximate similarity. Each time a container object
is constructed, it is checked for potential patterns. These patterns
are converted to list objects then. Adjacent list objects are checked
for visual similarities and are merged if they are similar.

Here we define some terms used in following discussions. For
container object C={e1, e2, … , en}, an object o is represented by a
sub-string of C as {es, … , es+l-1}. Visual pattern p is represented as
a set of “equal” objects {o1, … , om} and some times represented
by a typical element op of the pattern. We also follow some
heuristics as listed below for locating possible patterns:
! Equal Judgment: Two objects are equal only if their similarity

measurement is not below a threshold Ep.
! Minimal Frequency: A pattern must contain at least Fp objects.
! No Overlap: Objects in one pattern do not overlap with others.
! Alignment: Objects in one pattern are normally aligned tidily.
! Paragraphs: Contents that reside in the same unbroken text

line should be tightly related and thus will be treated as one
element (This is what group objects stand for).
! Minimal Deviation: Standard deviations of objects’

distributions (positions) and lengths in potentially better patterns
should be smaller.
! Maximum Coverage: The better patterns should have bigger

coverage of elements in C.
! Sub-pattern Replacement: If all objects in a pattern are

concatenations of “equal” sub strings (sub-pattern), then these
objects are expanded to sub-strings. Assume a pattern as {{e1,
… , em}, {em+1, … , em+k}, …} and ei == ej,∀i,j, then the pattern
is expanded to {e1,…, em,em+1,…, em+k, …}.
! Significant Token: Records in one category should have

similar prefix elements (A pattern starts at a significant token).

3.1 Quantization

To reduce the complexity of frequency counting, we first
cluster candidate elements according to similarity measurements
between each element. These clusters are then labeled with
unique identifiers. Elements in the same cluster are assigned with
same identifier and are considered as equal to each other. As we
said before we call this process as quantization. Currently, we use
a DBSCAN [16] like clustering algorithm because we do not
know the number of possible clusters (or groups of similar
elements) at the beginning. Another reason is that our heuristics
have specified two values (Ep and Fp) that are just the epsilon and
minimal density as required by DBSCAN. Given a distance
function between two elements (as similarity measurement) and a

4

minimal acceptable density (as defined by heuristic “minimal
frequency” and “equal judgment”), we can define our Eps-
neighbourhood and core point condition [16] as following. Other
terms like density-reachable and density-connected can be defined
respectively and thus cluster and noise.
! Eps-neighbourhood: NEps(e)={e'∈C | similarity(e, e') ≥Ep},

where Ep is from “equal judgment”.
! Core point condition: | NEps(e)| ≥Fp, where Fp is defined by

“minimal frequency”.
For C={e1, e2, … , en}, if the clustering result is m clusters as

T1={ea, eb, … , ex}, … Tm={es, et, … , ey}, we construct a token
string T={t1, t2, … , tn} with ti equals to the cluster identifier that ei

belongs to. The token string is then passed to the frequency
counting stage. In following discussions we use an example as
C={e1, e2, … , e13} and clustering result as T= {C, A, B, D, A, B,
E, D, A, B, C, A, B} with 4 clusters labeled as ABCD and 1
outlier labeled as E.

3.2 Frequency Counting

Frequencies of quantized patterns are counted efficiently using
a suffix tree representation of token string T. Starting from the root
node, the "label of path" of a node is actually what we called as a
pattern and leaves under the node are positions of the pattern in
string. The number of leaves under each node is exactly how
many times the pattern appears in the string. Figure 1 gives an
example of pattern counting of string T using suffix tree.

A
B

D
A
B
E
D
A
B
C
A
B
$

C
A
B

D
A
B
E
D
A
B
C
A
B
$

B

D
A
B
E
D
A
B
C
A
B
$

12
3

$

11

E
D
A
B
C
A
B
$

5

E
D
A
B
C
A
B
$

6

C
A
B
$

9

$

12

D
A
B

E
D
A
B
C
A
B
$

4

C
A
B
$

8

$

13

E
D
A
B
C
A
B
$

7

$

14
C
A
B
$

10

4
4

2
2

Figure Figure Figure Figure 1111. . . . PaPaPaPattern frequency countingttern frequency countingttern frequency countingttern frequency counting
To build the tree, we borrow some code from [19] which is an

implementation of Ukkonen’s algorithm [18]. We modify it
slightly to fit with our requirements. The algorithm is O(n)
complexity. We won’t repeat the details here since the author
gives a very good introduction over it.

3.3 Selection and Confirm

From the results of frequency counting, we choose the best
patterns based on heuristics listed above. As we can see from
Figure 1, frequency of {A, B} and {B} is the highest and are good
candidates. And {A, B} is superior to {B} according to heuristic
“maximum coverage”. However {A, B} can only cover a part of
the elements because of outliers as {C, D, E}. To cop with these
outliers we expand these patterns based on approximate similarity
measurements and heuristic “significant token”. Currently we use

a naïve method -- starting from a strict pattern, we try to append
succeeding elements after each object of the pattern. The
consistency of the pattern is checked during the process and it
stops if an appendant breaks the consistency. To illustrate the
process, we list the steps of expanding pattern {A, B} below:

{e1, {e2, e3}, e4, {e5, e6}, e7, e8, {e9, e10}, e11, {e12, e13}}
→ the original pattern {A,B}
{e1, {e2, e3, e4}, {e5, e6}, e7, e8, {e9, e10}, e11, {e12, e13}}
→ one element appended

… … (repeat)
{e1, {e2, e3, e4}, {e5, e6, e7}, e8, {e9, e10, e11}, {e12, e13}}
→ final result
From the example we can see that heuristic “significant token”

might some time miss possible best patterns like {{e1, e2, e3}, {e4,
e5, e6, e7}, {e8, e9, e10}, {e11, e12, e13}} which do not have a
“significant token” at the beginning.

3.4 Construction of Structured Document

Structured documents are constructed in a recursive manner.
Starting from simple objects and group objects, we divide these
elements into initial container objects roughly based on block-
level tags [20]. Then we apply the pattern detection algorithm to
elements of these initial container objects, and detected patterns
are converted to list objects. For example, using container object
and patterns of section 3.3, we can create a new container object
as {e1, {{e2, e3, e4}, {e5, e6, e7, e8}, {e9, e10, e11}, {e12, e13}}} where
the underscored element is a list object. Note that outliers between
two list elements are appended as do-not-cares. We then expand
container objects to upper levels by merging objects under the
same parent if they are not enclosed in important structures
(Currently we think <H1>…<H6>, <FORM>, <ADDRESS>,
<TABLE>, , and <DL> should be kept). After
expanding, we check if two adjacent list objects are similar and
merge them into one if they are. The whole process then repeats
until<BODY> of HTML document has been processed. The final
container object is the hierarchical structured document that is
actually a tree representation of original page.

3.5 Special Consideration of HTML Table

In this section, we discuss how to apply our visual cue based
method to analyze structures of HTML tables. Tables are the
most frequently used layout tools of HTML pages. From regular
data tables to general content layouts (Here we name data tables as
that represent cleanly organized data like stock, price, etc), tables
provide a powerful way to control positions and alignments. For
this reason, tables are considered a very important source of semi-
structured data. Several approaches have been developed to
extracting structured contents from data tables. Typical
approaches like [8] does this by manually specifying rules and
pattern strings to locate wanted data. Method introduced in [14]
made further steps by automatically analyzing data tables with
titles and headers. These approaches, however, did not mention

5

ways to decide if a table is data table automatically.
As we can see that data tables are normally organized tidily and

thus should hold very strong visual similarity patterns. In addition,
many general contents tables also hold the strong visual cue. It’s
not strange to make use of the alignment nature of tables as the
starting point of structure analysis. We start the analysis from a
pseudo rendering process that counts the rows and columns of a
table at first (HTML table 'colspan' and 'rowspan' attributes
are also taken care of in this step). Then, all empty rows and
columns are stripped since these are only for spacing and other
layout purposes. Because column-wise and row-wise
organizations are quite common for data tables, we detect this
situation firstly by checking if the table has headings and footings
(such as that specified by <TH> <THEAD> <TFOOT> tags).
Then, we compare elements in rows and columns to check if
similarity consistency holds. If none of the above checks is
successful, we will then try a more aggressive method that divides
the table into smaller rectangular blocks and these blocks are
checked for similarity consistency. Currently we divide these
blocks according to divisors of the number of columns and rows
based on an assumption that one category of contents should be
held in one table only. We pass the table back to default detector if
all efforts fail.

http://www.siliconinvestor.com/stocktalk/sub_hot.gsp http://www.msnbc.com/news/NEWS_Front.asp

Data table without header

Data table with header

Layout table

Figure Figure Figure Figure 2222. Examples of common HTML tables. Examples of common HTML tables. Examples of common HTML tables. Examples of common HTML tables

4. Experimental Result and Analysis

We have implemented an experimental detector to test our
ideas. Test data are web pages randomly collected from popular
sites listed by http://www.100hot.com. Beside these we also
collect the first page (normally contains a directory list) and search
results of several popular search engines. Total number of pages is
50. We then run our test program and save extracted structure as
text files for manual analyzing later. Experimental results are
listed in following table. Because of lacking impersonal ground-
truth references, we can only list some numbers for reference
purposes (If you want to have a test with your own data, you may
contact hjzhang@microsoft.com for executable of the detector).

Table Table Table Table 3333. Experimental results with a test set of 5. Experimental results with a test set of 5. Experimental results with a test set of 5. Experimental results with a test set of 50000
Results Number of Documents

All chunks are detected 46
Missed some apparent chunks 2
Failed to parse the document 2

Although the test is still based on a small data set, from these
results we can see that most of the category chunks are detected
successfully with some minor exceptions. There are 2 pages our
detector misses some apparent chunks on them. In common, these
pages are a bit cluttered and have very complex table based

layouts that our detector fails to analysis effectively. Our HTML
parser fails over the other 2 pages because of HTML syntax errors.

Table Table Table Table 4444. Analysis of exceptions. Analysis of exceptions. Analysis of exceptions. Analysis of exceptions in results in results in results in results
Exceptions Reasons

Wrongly confirmed
chunks

•Mistakes by visual similarity
measurement

One chunk broken up to
two or more

•Mistakes by visual similarity
measurement

Mis-aligned boundary •Detected patterns are skewed
•Heuristic significant token does not hold

Missed chunks •Style Sheets are not supported
•DHTML and scripts are ignored currently

Failed •HTML Tidy failed to parse the page

5. Application in Adaptive Content Delivery System

We have used an early version of the structure detector in a
test-bed of adaptive web content delivery [1, 17]. To give a quick
summary, for users with very slow Internet connections, the basic
idea of our adaptation process is to summarize web pages to some
levels that will not affect human comprehension too much in favor
of download speed and client (device/browser) capability. The
process uses some heuristics based on basics of web UI design:
! Categories/items occupying larger display area are more

important (potential of user interests) than those smaller ones.
! Users prefer to see full images or videos in their browsers and

dislike scrolling a window on large images.
! Important items in are organized in front of trivial ones.
! Users can catch the ideas of a big category with only a small

subset of content items in it.
! Impatient users should be in favor of deeper organization

structure of information (smaller pages thus faster download but
with deeper hierarchies) instead of wider ones (larger pages thus
slower download but with less hierarchies).
From these heuristics, we deduce some rules to reduce contents

with tolerable information loses:
! Importance values of categories/items are initialized by areas

they occupy.
! In case of deletion, contents are preserved according to their

importance values.
! In case of summarization, larger categories are summarized

prior to small ones.
! List objects are summarized by truncating tailing items.
! Large images are shrunk to fit inside the browser’s screen.
! Contents deleted in a step can be made accessible further.
The adaptation process consists of several steps as:
1. Content structure analysis: The structure detector introduced

here is used to locate content categories on HTML pages and to
build abstract representations of contents that include these
structure information and additional content attributes as areas
of objects, object size, etc.

2. Content reduction: Content reduction rules are applied to
abstract representations according to detected network
bandwidth and type of client devices in favor of speed.

3. Page reconstruction: The reduced abstract representations are
mapped back to original HTML pages to generate reduced web

6

pages that should be downloaded faster.

The categories
(visual patterns)
we detected.

(a) Original web page from “Yahoo!”

 (b) Adaptation result 1 (c) Adaptation result 2
Figure Figure Figure Figure 3333. Experimental results of the adaptive web . Experimental results of the adaptive web . Experimental results of the adaptive web . Experimental results of the adaptive web

content delivery systemcontent delivery systemcontent delivery systemcontent delivery system
Figure 3 shows an example of the adaptation results. As we

can see that detected content structures plays a very important role.
With guided reduction of contents, rich information and original
organizations can be preserved.

6. Conclusions

In this paper, we have presented a visual cue based approach to
extraction of semantic structure of HTML documents. It relays on
the observation that for most web pages layout styles of subtitles
or records in the same content category are kept the same and
apparent separation boundaries exist between different categories.
We have tested the method with a set of 50 web pages collected
randomly from directories of http://www.100hot.com. An
example of using it in our adaptive content delivery test-bed is
introduced briefly later. These preliminary experimental results
show that the approach works well with only a few exceptions.
Also note that this approach is not exclusive of other methods. It’s
possible to achieve better results if we combine it with other
approaches. We hope future works will prove this.

Acknowledgements

The HTML parser in our experiments is based on HTML Tidy

[22] that is W3C open source software and is by Dave Raggett.
The suffix tree construction algorithm is based on Mark Nelson’s
codes [19]. Here we thank the authors for their great works.

References

[1] Y.D. Yang, J.L. Chen, and H.J. Zhang, "Adaptive Delivery of HTML
Contents", WWW9 Poster Proceedings, May, 2000, pp24-25.

[2] A. Fox, S.D. Gribble, et al, "Adapting to Network and Client
Variation Using Infrastructural Proxies: Lessons and Perspectives",
IEEE Personal Communication, V5, I4, 1998, pp10-19.

[3] T.W. BickMore, and B.N. Schilit, "Digestor: Device-independent
access to the World Wide Web", Proc. of the 6th International World
Wide Web Conference, 1997, pp655-663.

[4] M. Liijeberg, H. Helin, M. Kojo, and K. Raatikainen, "Enhanced
services for World Wide Web in mobile WAN environment", Report
C-1996-28, 1996, University of Helsinki Finland.
http://www.cs.helsinki.fi/research/mowgli/

[5] W.Y. Ma, I. Bedner, G. Chang, A. Kuchinsky, and H.J. Zhang, "A
Framework for Adaptive Content Delivery in Heterogeneous Network
Environments", Proc. MMCN2000 (SPIE Vol. 3969), 2000.

[6] J.R. Smith, R. Mohan, and C.S. Li, "Scalable Multimedia Delivery
for Pervasive Computing", Proc. of the 7th ACM International
Conference on Multimedia, 1999, pp131-140.

[7] Web Clipping, 3Com, http://www.palm.com/
[8] J. Hammer, H.Garcia-Monlina, J. Cho, R. Aranha, and A. Crespo,

"Extracting semistructured information from the web", Proc.
PODS/SIGMOD'97, May 1997.

[9] N. Ashish, and C. Knoblock, "Wrapper generation for semi-
structured Internet sources", Proc. PODS/SIGMOD'97, May 1997.

[10] D. Simth, and M. Lopez, "Information extraction for semi-structured
documents", Proc. PODS/SIGMOD'97, May 1997.

[11] S. Nestorov, S. Abiteboul, R. Motwani, "Inferring Structure in
Semistructured Data", Proc. PODS/SIGMOD'97, May 1997.

[12] D.W. Embley, Y.K. Ng, L, Xu, "Filtering Multiple-record Web
Documents Based on Application Ontologies",
http://www.deg.byu.edu/papers/vldb00.ps

[13] D.W. Embley, Y. Jiang, Y.K. Ng, "Record-Boundary Discovery in
Web Documents", In Proc. SIGMOD'99, 1999, pp467-478.

[14] S.J. Lim, Y.K. Ng, "An Automated Approach for Retrieving
Hierarchical Data from HTMLTable", In Proc CIKM'99, pp466-474.

[15] D. Siegel, "The Web is Ruined and I Ruined It",
http://webreview.com/97/04/11/feature/

[16] M. Easter, H-P. Kriegel, J. Sander, X.W. Xu, "A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise", In Proc KDD'96, 1996.

[17] J.L. Chen, Y.D. Yang, H.J. Zhang, "An Adaptive Web Content
Delivery System", in Proc. International Conference on Adaptive
Hypermedia andAdaptiveWeb-based Systems (AH-2000),Aug.2000.

[18] E. Ukkonen, "On-line construction of suffix trees", Algorithmica,
14(3), Sept. 1995, pp249-260.

[19] M. Nelson, "Fast string searching with suffix trees'', Dr. Dobb's
Journal,August 1996.

[20] W3C, "HTML4.0 specification", http://www.w3.org/TR/html4/
[21] W3C, "Cascading Style Sheets", http://www.w3.org/Style/CSS/
[22] W3C, "HTMLTidy", http://www.w3.org/People/Raggett/tidy/

